Activation of AMPA, Kainate, and Metabotropic Receptors at Hippocampal Mossy Fiber Synapses Role of Glutamate Diffusion
نویسندگان
چکیده
Glutamatergic transmission at mossy fiber (MF) synapses on CA3 pyramidal neurons in the hippocampus is mediated by AMPA, kainate, and NMDA receptors and undergoes presynaptic modulation by metabotropic glutamate receptors. The recruitment of different receptors has thus far been studied by altering presynaptic stimulation to modulate glutamate release and interfering pharmacologically with receptors and transporters. Here, we introduce two novel experimental manipulations that alter the fate of glutamate molecules following release. First, an enzymatic glutamate scavenger reduces the postsynaptic response as well as presynaptic modulation by metabotropic receptors. At physiological temperature, however, the scavenger is effective only when glutamate uptake is blocked, revealing a role of active transport in both synaptic and extrasynaptic communication. Second, AMPA and kainate receptor-mediated postsynaptic signals are enhanced when extracellular diffusion is retarded by adding dextran to the perfusion solution, as is feedback modulation by metabotropic receptors, suggesting that the receptors are not saturated under baseline conditions. These results show that manipulating the spatiotemporal profile of glutamate following exocytosis can alter the involvement of different receptors in synaptic transmission.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملRole of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses
Presynaptic autoreceptors modulate transmitter release at many synapses. At the mossy fiber to CA3 pyramidal cell (mf-CA3) synapse, two types of glutamatergic autoreceptors have been identified: transmitter release is reportedly suppressed by metabotropic glutamate receptors (mGluRs) and augmented by kainate receptors (KARs). However, the net effect of these autoreceptors when activated by endo...
متن کاملDistinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.
Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout m...
متن کاملAn interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo
The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either Glu...
متن کاملAttenuated plasticity of postsynaptic kainate receptors in hippocampal CA3 pyramidal neurons.
Kainate receptor-mediated components of postsynaptic currents at hippocampal mossy fiber synapses have markedly slower kinetics than currents arising from AMPA receptors. Here, we demonstrate that other aspects of kainate and AMPA receptor function at this synapse are distinct; in particular, kainate receptor currents are less sensitive to short- and long-term increases in presynaptic strength....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 21 شماره
صفحات -
تاریخ انتشار 1998